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Abstract-An analysis for the pre- and postbuckling behavior of infinite length panels, stiffened
and unstiffened, including transverse shear and temperature dependent elastic moduli and thermal
expansion coefficients, is proposed. The analysis involves the solution of a system of nonlinear
differential equations by means of a relatively new spline-collocation method. Results, yielded by
the present study and describing the response of lightly to moderately stringer-stiffened panels and
unstiffened ones, subjected to heating and pressure loading, are presented. It is shown that neglect
of transverse shear and temperature effects may lead to erroneous results and conclusions.

1. INTRODUCTION

Reusable hypersonic flight vehicles are subjected to combined aerothermal and mechanical
loading. Broad reviews on the progress and state-of-the-art in the area of hypersonic
structures and materials are given in Jackson et al. (1987), Tenney et al. (1988) and
Thornton (1990). The complicated coupling between the aerodynamic flow field and the
structural heat transfer, the aerothermostructural problem, is dealt with in numerous papers
[e.g. Thornton et al. (1989), Thornton and Dechaumphai (1987), Shih et al. (1988) and
Wieting et al. (1988)].

Unstiffened and stiffened thin-walled cylindrical type elements are considered as prime
candidates for the airframe ofhypersonic vehicles. These structures are, however, susceptible
to buckling instability. Therefore, their introduction as efficient weight/stiffness load
carrying structural elements, depends strongly upon the capability to predict adequately
their incipient buckling, and particularly their transient response from the critical buckling
state to an adjacent postbuckled equilibrium state and the postbuckling behavior thereafter.
This is because the behavior determines the "sensitivity" of the panel to the presence of
initial geometrical imperfections, i.e. either its failure, usually of a catastrophic nature,
under loads which are lower than its critical load, or its capability to sustain safely loads
which follow a postbuckling equilibrium path, thus contributing to the increase in element
structural efficiency,

Buckling and postbuckling of cylindrical panels and shells, stiffened and unstiffened,
under mechanical type loading, has been the subject of hundreds of studies. Studies on
thermoelastic stability problems are also quite extensive [see Keene and Hetnarsky (1990)
and the many references cited there and Ziegler and Rammerstorfer (1989)], However, it
should be noted that in so far as postbuckling due to thermal loading is considered, only
initial buckling or "narrow" postbuckling is dealt with in most of the investigations, i.e.
just after incipient buckling occurs,

There are various approaches to treating the stability problem. The traditional
approach is based on linearization of the prebuckling state, thus reducing mathematical
complexities. Such an approach renders acceptable results for a wide range of problems,
where bending in the prebuckling state can be discarded. In structures, however, which
exhibit pronounced nonsymmetric deformation, this type of solution is inadequate. There,
an approach, which treats the stability problem as a nonlinear boundary problem for all
states of loading, pre- and postbuckling, is more appropriate and therefore its application
for this class of problems is preferable [see Andreev et al. (1988)]. Such solutions provide
the means for investigation ofcases where nonunique states ofequilibrium exist to determine
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bifurcation and limit loads and to describe the behavior in the postbuckling range. It should
be noted that in the above approaches the structures are considered as being relatively thin
and therefore the transverse shear is usually not accounted for.

The design of aerothermal structures involves application of a new generation of
materials. Utilization of these materials may result, amongst others, in anisotropy of
the structural elements, substantial temperature dependence of their properties and low
transverse shear stiffness. Neglecting these properties, even when applying linear type
analysis, may lead to faulty results (Khoroshun et al., 1988a, b). Therefore, the design of
thin-walled constructions for "hot" type structures calls for the introduction of nonlinear
approaches, accounting for the above mentioned properties, for their analysis.

The above discussion obviously emphasizes the need to provide an improved analytical
tool, which accounts for temperature dependent material properties as well as transverse
shear effects, for better prediction of buckling and description of postbuckling behavior
of thin-walled hypersonic type cylindrical elements, subjected to combined thermal and
mechanical loading. As a step aiming towards achieving this goal it is the objective of the
present study to develop a tool for the investigation of buckling and postbuckling of
infinitely long cylindrical panels, fabricated from materials characterized by temperature
dependent moduli of elasticity and coefficients of thermal expansion, that considers trans­
verse shear flexibility effects.

2. ANALYSIS

A Timoshenko type geometrically nonlinear model constitutes the basis for the present
analysis. The equations (Grigorenko and Timonin, 1982) which govern the behavior of the
cylindrical panel treated herein, are given by the following kinematic relations:

atjJ,
K - ----

II - art I '

() 2 = 1 (- ~-~ + v),
R Ort2

(I)

equilibrium equations:
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(2)

and relations for the force and moment resultants:

N I = CIIS II +C12 s22 +KII KII +KI2 K22- N IT,

N 2 = C I2S I1 +C22B22+K12KII +K22 K22- N 2T'

(3)

where tXI is the longitudinal coordinate, tX2 is the circumferential angle, R is the radius and
u, v, ware displacement components of the coordinate surface (Fig. I); t/J h t/J 2 are the
angles of rotation of a segment, originally normal to the coordinate surface in planes
tX2 = const and OCI = const, respectively; N h N 2, N 12 , M I, M 2, M 12 , Q" Q2 are the in­
plane force, moment and shear force resultants; qT, qt q! are the projections of external
surface load onto axes associated with the undeformed coordinate surface. (When the acting
load remains directed along the normal to the coordinate surface in the deformed state,
then qT=q(OChOC2)o(}h q~=q(tXI,OC2)o(}2' q!=q(tXhOC2), where (}h (}2 are the angles of
rotation of the normal to the coordinate surface.)

In eqns (3) the coefficients Cij, Kij' Dij are the structural stiffnesses and NiT, MiT are
the thermal forces and moments, respectively. The stiffnesses are given by the following
integrals:

f
h l

Kij = Eij"zdz,
-h 2

5 fh l

CiJ = -6 GiJ dz
-h 2

f
h l

K66 = G 12 0 z dz,
-h 2

(i, j = 1,2) (4)

Fig. I. Geometry of a cylindrical panel.
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and the thermal forces and moments are defined by:

f
l
!',N" (EliaT+£;2a!)' Td::,

AliT f;: (£lia f+ £i21:J.!)· T;; d:: (i = 1,2), (5)

where E;i = £;/( 1- V 12 V21), £12 = £1 I • 1'12 and hi, h2 are the distances from the coordinate
surface to the upper and lower lateral surfaces of the panel, respectively' T(a I' a2' z) is the
temperature change from a reference state, and integration is to be performed over the
thickness, taking into account the dependence upon T of material properties.

It is worthwhile noting that even for a constant thickness structure, when the coordinate
surface coincides with the middle one, the coefficients K jj are not equal to zero, if the
temperature dependencies of £j(1') and Gi/(T) are taken into account and temperature
distribution is nonsymmetric across the thickness.

The following dependence upon temperature of the elastic moduli £;, Gu, and the
coefficients of linear temperature expansion of a! are assumed:

£; = £jo(1 h Ii' T - h2i • T 2), G" = Gi3o (1 -,q Ii' T - g2j • T 2),

a!=a io(l-IIi'T-I,,;'T2
) U= 1,2), (6)

where bij, gij' lij are constants determined experimentally. Also, it is assumed that Poisson
ratios, vu, depend only slightly upon temperature and therefore are considered as being
constants.

For application of the spline-collocation method, described in Section 3, for the
calculation of the behavior of the infinite cylindrical panel, it is convenient to present the
equilibrium equations by the kinematic unknown functions u, P, Ii'. Assuming that q and T
do not depend upon the I:J.I coordinate, inserting (I) into (3) and further into (2), taking
into account the stiffnesses variation along:X2 and discarding terms which have derivatives
with respect to a I a system of three nonlinear ordinary equations is obtained. This can be
written in the following matrix-operator form

(7)

where t 1 = (11 = v, I" = IV, t, = t/12), and the operators !J.ii and nonlinear functions F; are
given in the Appendix.

The system ofequations (7), together with appropriate boundary conditions, constitute
a one-dimensional boundary problem. In what follows, two types of boundary conditions
at the edges :x" = ±:Xo will be considered:

(a) clamped ends: l' = H' = t/1 2 = 0,

(b) simply-supported ends: l' = IV = M 22 = o. (8)

In the present analysis the problem formulation and the solution method are presented
so as to include and treat panels with nonuniform stiffness, due to either variable thickness
(e.g. stiffeners), or to uneven temperature distributions when temperature dependence of
material properties is accounted for. Also, the proposed analytical model accounts for
transverse shear effects, which are usually omitted from "classical" type calculations.
In order to achieve an accurate decription of the panel response nonlinear prebuckling
deformations are included, and both pre- and postbuckling analyses are regarded as a single
nonlinear boundary problem in accordance with Andreev et al. (1988).
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3. SOLUTION

A relatively new spline-collocation method (Zav'yalov et al., 1980) is employed for the
solution of the nonlinear equations (7), together with the boundary conditions (8). The
method is based on satisfying the differential system and boundary conditions in a finite
set of discretization points. B-splines are adopted to represent the solution vector t
[eqns (7)].

A subdivision (j is prescribed on the interval [- (;(0, (;(0]: - (;(0 = Xo < XI < ... < X 2N <
X2N+ 1 = (;(0, This subdivision with the additional nodes X_ 3 < X_ 2 < X_I < Xo = - (;(0 and
X2N+4 > X2N+3 > X2N+2 > X2N+I = (;(0, which can be chosen rather arbitrarily, yields
a subdivision (j'. In accordance with Zav'yalov et al. (1980), a system of functions B;(x)

(i = - 1, 2N+ 2), shown in Fig. 2, is introduced for (j'. This system constitutes a system
of normalized local cubic B-splines which forms a basis for the space S3,1«(j) of twice con­
tinuously differential cubic splines constructed in the subdivision (j. Now, a modified
scheme in which collocation points Yi are selected in a special way so that they do not
coincide with nodes of B-splines ([Y2i' Y2i+ 1] C [X2i' X2i+ tl, i = 0, N), is applied for the
solution of the problem.

Thus, solution of the boundary problem [eqns (7) and (8)] in the interval [- (;(0, (;(0] is
sought in the form of the following expansions:

2N+2

tj = I Wl. B;(x) (j = 1,2,3).
;=-1

Inserting (9) into (7), we obtain at the collocation points:

3 2

L L [bY)+mL'lij(B 2p +m(Y2p))] = F i(Y2P' b~~_ h b~~, b~~+ h b~~+ 2, ... ,
j=1 m=-I

(9)

b (3) b(3) b(3) b(3) )
2p- h 2p, 2p+ h 2p+ 2 ,

3

L I [bY)+mL'lij(B 2p +m(Y2p+l))] = Fi(Y2P+hb~~,b~~+hb~~+2"'"
j=1 m=-I

and from (8) we similarly obtain at the edges:

3 I

I L W)Qmj = Lm(xo, b<.!)I, b~I), b\ll, . .. , b<.!)I, W), W)),
j= I i=-I

3 2N+ 2

L I WlPmj = Km(X2N+J,b~~,b~~+J,b~~+2, ... ,W)"b~3J+hb~3J+2)
j= I i= 2N

Fig. 2. Choice of nodes of B-splines Xi and collocation points Yi'

(m = 1,2,3),

(11)
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where QIII/' L"" Pm)' Kill are determined by the type of boundary conditions under consider­
ation. It should be noted that approximation of the boundary conditions by B-splines does
not encounter any special problems, since cubic splines ensure a high degree of accuracy
for presenting the fhst derivative. Relations (10) and (II) yield a system of nonlinear
algebraic equations of the order 3(2N+4)

A' ( = H«(), ( 12)

h rT ("bill hll ) /'') /111 hl11 ) A' b d . . h" 'd h Iwere .. = ~ I, hI' h"" 12A+ 2, 2A+2, IS a sparse an matnx, Wit a WI t equa
to 17 and the H-vector represents coordinates, which are nonlinear functions of the'
components. Furthermore, the system (12) is solved by a method based on a combination
of the continuation parameter and Newton methods, which converts the algebraic set into
a linear sequence. In accordance with Ortega and Poole (1981) this is solved by iterations
for which the kth iteration is obtained as fonows:

(I) Solve the system

(13 )

(2) Set

(14)

This process is continued until the condition

(15)

is reached, where I: is of a small prescribed magnitude: II- II is one of the norms in the space
,'~3(2N+4J of 3(2N+4)-dimensional vectors. In the present calculations D was set equal to
D = 10 5, and (12) is solved by the Gauss method, utilizing compact band matrix stacking
schemes.

In the computer program the forming of an initial estimation (1 0\ which is "close" to
the real solution, is ensured by application of the continuation parameter method. The
process begins with small magnitudes of the loading parameter, I., where the nonlinear
solution is close to the linear one. Repeating the calculations for increasing magnitudes of
the loading parameter )'1 +A)'I' I" +2A)'I, ... an initial vector {I 0), for each following step,
is built by extrapolation of previous solutions. Twice continuously differential cubic splines
were used for this purpose.

Within the framework of the present algorithm, determination of singular point pos­
itions requires that det IA - H; I °(Andrew et aln 1988). Investigation of the matrix
J ic I(A - Jr)(D(A - Hlial.)1 is necessary to determine the character of a singular point. If
det IA - fl' I °and det Jk = 0, a bifurcation point is obtained. On the other hand, if
det IA - H' I 0 and det Jk 1= 0, a limit point is yielded. Here Jk is the matrix obtained from
Jic , after elimination of the kth column. Once the singular points are allocated, further
analysis of the postcritical behavior of the deformed state requires the solution of the
branching equations (Andreev e/ al., 1988). Herein, postcritical behavior is investigated
only for cases associated with a limit point. The initial segment of the postcritical branch
is constructed as follows. An initial estimation of the postlimit solution, L\;. < 0, is obtained
by extrapolation of the segment terminated by the last converged prelimit point (the segment
size is dictated by extrapolation order). Now, this estimation is employed to find the "exact"
solution of (7) by the Newton iteration procedure. Sufficient points of the postlimit branch,
which are required to establish the segment size for further extrapolation, are obtained by
the same procedure for additional increments AI,. Then, the successive advance along the
branch is realized by application of the extrapolation scheme to the obtained postcritical
segment for determining ~(Ol, followed by the Newton method for the solution of (12). This
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is continued till the lower critical point is achieved. Further, the procedure is repeated for
the positive increments of the Aparameter.

l:he above spline-collocation approach can easily be applied to systems of differential
equations with coefficients having first-order finite discontinuities. To ensure fast con­
vergence in such cases it is required to choose the collocation points so that the dis­
continuities are located between two nodes ofthe grid 1>, which are very close to one another.
The scheme used in obtaining the solution in these cases is identical with that used for
smooth continuous coefficients. Consequently, the spline-collocation method can also be
used to solve problems dealing with stiffened constructions, as well as structures having
nonsmooth mechanical parameters.

The above proposed solution technique yields a second order accuracy for any 1>.
However, theoretical estimation of the accuracy is rather complicated and can be more
easily found on the basis of applying the method to a concrete problem and testing the
convergence for that particular case.

It is worthwhile noting that in contrast to the finite-difference methods, where the
solution is determined only at the nodes of the grid, the spline-collocation method, like
finite-elements, provides an approximate solution over the entire interval [- iXo, iXo]·

4. RESULTS AND DISCUSSION

Using the present analysis and proposed solution technique responses corresponding
to the following cases: stiffened and unstiffened panels subjected to pressure only; unstiffened
panels exposed to heating alone and to combined heating and pressure, were investigated.

4.1. Verification test calculations
In order to assess the capability of the proposed approach to predict adequately the

panel response, verification calculations were performed prior to its application for the
solution of the above loading cases.

4.1.1. 8.imply-supported isotropic panel under pressure (h/R 1/10; 1/100; 1/1000;
iXo = 1/2j6(h/R))-comparison with Grigorenko (1977). A rigorous exact solution
(Grigorenko, 1977) yields a nondimensional "critical" deflection:

w* = - 2/3h . w(O)

and "critical" pressure

Results obtained by the present analysis for upper and lower critical loads, together with
the corresponding deflections at panel midpoint, are given in Table 1. It is apparent from
Table 1 that "classical" theory yields results which are h/R independent, whereas taking
into account transverse shear significantly affects the results. This is particularly emphasized
when comparing the values wt and qt yielded by the "classical" model with those obtained
by the present analysis for the relatively thick panel, h/R 1/10.

Table I. Critical loads and deflections-verification tests

hlR

Proposed approach

w*u

Grigorenko (1977) ("classical" model)

1/10
1/100
1/1000

2.86523
2.95803
2.96621

0.31334
0.31765
0.31783

1.49984
1.91898
1.95721

0.77960
0.72238
0.71688

2.96984 0.31820 1.96752 0.71680

u-·upper; L-lower.
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Table 2. Effect of type of discretization on convergenL'\: of q,,' to 7 (Pa)

N

Xi YI

X i "# }'j

to 25 50

6.46922 6.38949 6.37754
6.34533 6.36824 6.37211

100 150

6.37449 6.37392
6.37312 6.37331

200 300 600

6.37372 6.37357 6.37349
6.37337 6.37342 6.37345

4.1.2. Convergence-·clamped orthotropic panel under pressure (R = 1m; h = Rj 10;
an = nj6; V1 2 = 0.1742; V21 = 0.1057; E2 = 2.808'10 10 Pa; 0 23 = E2 j10). Convergence of
the proposed method, Section 3, is tested for two different cases of the domain discretization:
(a) the collocation points, Yi, coincide with nodes of B-splines, Xh and (b) Xi i= Yi' The
results of calculations of the upper critical load qll' 107 and of er (w), the relative deviation
from the exact solution (w calculated at the midpoint), obtained for various discretizations
N, are presented in Table 2 and Fig. 3. It is apparent both from Table 2 and Fig. 3, that
the choice Xi 0:/; Yi yields faster convergence and that the critical load converges faster than
the deflection, w. Furthermore, it is seen that for the case Xi = Yi the convergence is
approached from above, whereas for Xi 0:/; Yi it is approached from below.

The results of Fig. 3 are corroborated by those obtained in Sheinman and Adan (1987),
where a finite difference scheme is applied, and it is demonstrated that convergence depends
upon the load level, i.e. convergence in the linear region of the load-deflection diagram is
achieved with considerably fewer discrete points than in the highly nonlinear region.

4.1.3. Com1ergence-clamped stiffenedpanel under untform normalpressure (R = 30' h,
h = 1 mm; (Xn = nj8 ;four equidistant stiffeners: stiffener height, hs = 0.3 . h; stt/Tener width,
t, = 1.2' h and mechanical properties of example 4.1.2). Due to the presence of stiffeners
the panel thickness is piecewise continuous and the values of Cu. Kif' Du, NiT and MiT
undergo abrupt changes in stations, where a stiffener starts and terminates. To account for
these abrupt changes and to overcome anticipated convergence problems a considerably
refined discretization scheme was used in the vicinity of a skin-stiffener transition. It should
be noted that the present analysis treats the stiffeners, as well as the geometry and properties
of the skin-stiffener combination as being "smeared" [see Baruch and Singer (1963»).
Therefore, to avoid discrete effects and to provide adequate and satisfactory results. the
stiffeners in the present verification study are light to moderate and closely spaced.

er(w) %
10..,......-------------------,

2 G., ·0.0'

10 40
N

70

Fig. 3. Convergence of II' at midpoint.
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Table 3. Effect of stiffening on convergence

1657

Internal stringers

-w/h' W

External stringers

-w/h'103

Unstiffened
panel

N
q= _104 q= -7.71'106 -qu' IO - 6

(Pa) (Pa) (Pa)
q= -104 q= -7.71'106

(Pa) (Pa)
-qu' IO -- 6

(Pa)
-qu' IO -- 6

(Pa)

41 0.4800
82 0.4825

164 0.4836
328 0.4836

693.37
748.35
788.75
795.76

7.989
7.825
7.758
7.751

0.4732
0.4755
0.4766
0.4769

690.23
714.40
725.28
726.75

8.342
8.233
8.146
8.145

7.0896
7.0974
7.0994
7.0998

Internal and external stiffening were examined in the present test and convergence of
the critical loads and associated midpoint deflections are presented in Table 3. It appears
that the presence ofstiffeners affects the solution and a relatively large number ofcollocation
points (fine mesh) is required to minimize the relative convergence error. Also, as expected,
externally stiffened panels are more efficient, i.e. they yield higher upper critical loads and
lower critical deflections than internally stiffened panels do. There is also a significant
difference between the postbuckling behavior of externally and internally stiffened panels.
This will be discussed in the next section.

It is worthwhile noting that in all of the above test cases the maximum number of
iterations, that were required for each increment of load LlA, were mesh size independent.
They did not exceed 5 for achieving a convergence of e = 10- 6, per step, even in the most
nonlinear intervals of behavior. This is also true for the results presented and discussed in
the next section.

4.2. Normal uniform pressure-unstijfened and stijfened panels
Numerous studies dealt with these problems [e.g. see Yamaki (1984), Shreyer and

Masur (1966) and Sheinman and Frostig (1988)], however most of them neglect transverse
shear effects. As shown in Sheinman and Adan (1987) this may lead to erroneous results
and conclusions.

4.2.1. Unstijfened panels. Shear effects measured by the moduli ratio, G230 / £20' were
studied on the response of the panel in 4.1.2, with clamped boundary conditions, for the
following moduli ratios G230/£20 = 1/(2(1 +VI2)), 0.1 and 0.01. The results are dem­
onstrated in Fig. 4. The upper and lower critical loads are reduced considerably and the

-q/E20
0.00050 -.-----------------,

0.00025

bifurcations

0.00000 t---.,---r-----,----;---...J

5o 2 .3
-w/h

Fig. 4. Effect of transverse shear, G23o/E2o-clamped panel.
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-q/E20
0.00050.,.-------------------,

- - - - isotropic pa.nel

G2Jo/E20 10

- - - - - - GnD /E2o 1/100 /
I

0.00025

/
/

0.00000 -!----,.------.,.----,-------'

a 2
-w/h

Fig. 5. Load-deflection curves~internally stringer-stiffened clamped panel.

postbuckling behavior, associated with a large transverse shear effect, differs significantly
from that experienced with a small shear effect. This is reflected by the significant reduction
in the difference between the upper and lower critical loads with increase in the G230/E20

ratio. Also, it was found as well as observed in Fig. 4 that two bifurcation points exist in
the postbuckling zone only for small values of G230/Ezo. However, they do not influence
the symmetric mode of buckling. Contrary to this behavior, additional calculations showed
that an identical simply-supported panel experiences two bifurcation points for all tested
values of G 230/E20 , but the first one is achieved prior to the upper critical load and is
associated with an asymmetric buckling mode.

4.2.2. Stiffened panels. The results obtained for the internally stiffened panels of 4.1.3
are depicted in Fig. 5 and those yielded for externally stiffened ones in Fig. 6. The combined
effects of stringer height and transvere shear are also studied in these figures. It is observed
in these figures that the postbuckling behavior of stringer-stiffened panels depends upon
location of stiffeners. Furthermore, Fig. 6 suggests that since either the difference between

-q/E20
0.00050..,.....--------------,

/

0.00025

hs = 0.5· h

_L~s_d.3h

;-

I _ _ _ _ isotropic pa~e:'

Gnol E,o = 1/10

- G23D ! E,o = 1/100

0.00000 -l----,.------r---.,--------!

a
-w/h

Fig. 6. Load-defl.ection curves--externally stringer-stiffened clamped panel.
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the upper critical load, qu, and lower critical load, qL, is very small, or snap-through does
not exist, externally stiffened panels are less sensitive to the presence of initial geometric
imperfections than internally stiffened panels, which experience snap-through (Fig. 5).
Hence, due to their reduced "sensitivity", externally stiffened panels are considerably more
structurally efficient than internally stiffened ones.

Examining the transverse shear effect it appears from both Fig. 5 and Fig. 6 that
isotropic panels sustain the highest critical loads. These figures demonstrate and emphasize,
therefore, that neglect of transverse shear may result in significant overestimation of the
load carrying capacity. It is seen from Figs 5 and 6 that qu of a panel with G230 /E20 = 0.01
is only about 50% of that corresponding to an isotropic panel.

4.3. Thermal postbuckling behavior
In this section the temperature dependence of material properties, Ei, G23 and rf.t, in

addition to transverse shear, is accounted for in the analysis of the panels. It should be
noted that whereas among the many studies on thermal buckling temperature dependent
material properties are included only in a few of them [e.g. Krysko and Fedorov (1984)J,
there are no practically, postbuckling studies which include this temperature dependency.

4.3.1. Simply-supported shallow panel nonuniformly heated through the thickness
(h = 1mm; R = 700 ° h ; rf.o = 1£/72). The temperature-dependent properties and coefficients
(Section 2) for this example are as follows: E20 = 2.808 01010 Pa; G230 = E20/3;
VI2 = 0.1742; V21=0.1057; ctlO = 0.1l34 o lO- 4 °C- I; ct20=0.1418010-4 °C- I;
b I2 =0.25-1O- 2 °C- I; g12=b 12 ; III =0.2413-10- 7 °C- l

; 112 =0.2445-10- 7 °C- I;
b21 = g2i = 12i = 0 (i = 1,2).

Under the present nonuniform heating, a bending moment M 2T , leading to buckling,
is induced. The response of a panel, fabricated from a temperature-independent material,
is compared with that of a temperature-dependent material in Fig. 7. It is observed in this
figure that accounting for Ei(T), Gi3 (T) and ctt(T) in the analysis leads to significant
reduction in the load carrying capacity of the panel. It can sustain only about half the
bifurcation load carried by a panel for which temperature dependence ofmaterial properties
is discarded. On the other hand, it is apparent from Fig. 7 that the second bifurcation point
is almost identical in both cases of calculations. Also, it is found within the framework of
the present model that for the type of heating considered herein buckling occurs only for
shallow panels and provided that a considerable change in temperature exists between the
upper and lower surface of the panel.

1'7' ' 0120
0,0100,-----,.--------,

• - bifurcation points
Ei;;:;:: const

-0:1 =Co",,,t
E-::E-(Tj

--- ,,; :: ,,:(T)
0.0075

0.0050

0.0025

0.0000 +--,---'-,..--,..--..----1

-1.8 -0.8 0.2 1.2 2.2 3.2
-wjh

Fig. 7. Load-deflection curves-simply-supported shallow panel subjected to nonuniform through
the thickness heating T = (-1.3' zlh+O.35) ·PT.

$AS 30112-6
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-q/E,o·103

0,35,------------ --.,
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Fig. 8. Buckling interaction curves-clamped panel under combined pressure and uniform heating
(including temperature dependence of material properties).

4.3.2. Clamped panel subjected to combined uniform pressure and heating (h = I mm;
R = 30" h; (;(0 = n/8). The interaction curves corresponding to the nondimensional upper
and lower critical loads versus nondimensionalized temperature T'(;(zo" 103

, are shown in
Fig. 8. The temperature dependent properties are identical with those of example 4.3.1. The
depicted graphs are almost linear and it appears that elevation in temperature drastically
affects the load sustained by the panel. It should be emphasized that neglect of the tem­
perature dependence ofmaterial properties in the analysis yields results which are practically
temperature independent, i.e. the interaction curve will remain almost horizontal. Hence,
failure to account for Ej(T), Gi3 (T) and ex;"(T) may lead to considerable overestimation of
the loads withstood by the panel and consequently to erroneous decisions in the design of
structures exposed to aerothermal loading.

5. CONCLUSIONS

(I) An analysis, for studying the pre- and postbuckling response of stiffened and
unstiffened infinite length cylindrical panels with various boundary conditions and
subjected to thermal and mechanical loads, was developed.

(2) Transverse shear effects and temperature dependence of elastic moduli and of
thermal expansion coefficients were included in the analysis.

(3) A spline-collocation method was applied for solving the system ofhighly nonlinear
differential equations pertinent to the present boundary problem.

(4) Verification test calculations were performed to assess the accuracy and adequacy
of the proposed analysis. Good correlation with rigorous exact solutions is dem­
onstrated.

(5) Convergence studies indicated that the fastest convergence is achieved when col­
location points do not coincide with the nodes of B-sp1ines.

(6) Isotropic panels sustain the highest critical pressures. Therefore, neglect of trans­
verse shear effects may result in overestimation of the load carrying capacity of
the panel.

(7) Accounting for transverse shear effects and temperature-dependent properties may
lead to a significant reduction in the loads sustained by a panel in comparison with
"classical" results.

(8) Analysis of postbuckling behavior of stiffened panels subjected to pressure loading
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indicated that externally stiffened panels are less "sensitive" to initial imperfections
and are more structurally efficient.

(9) Failure to account for EJn, Gi3 (T), aNn may lead to considerable overestima­
tion of the loads withstood by the panel.
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APPENDIX

The differential operators 8ij and the nonlinear functions F i in (7) are determined by the following expressions:
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d +R'C"j.

t.,,=~[GKl'-C C,,+N,,+1M2r) d +(N2T2+1M2,,-Cn,)}

t.,,= ~,[(C2'-N'I- ~M")d~i+(C,' N'T' ~M2T2)d~2 +(~K,,-C,,)l
I r d I

8 2\ =Ri L(R' C2, - K'2) dex2 + R' (\"J

1[1 t )cf ( I \
t1 'I =R i (K"-R D" d.7.;+ K"'-R D",,)

8" = ~,[(K,,'- ~ D" R' C")d~~+(K'22

t1" = ~-{D"df3 +Dn , d -R"C,}

F = I, N"-(I~- _l.[_~l_(C"(~I"+ I (~l~)' -1" ~1.t'))J+I'(V-_~lt:)[·(C"-I D,,)(d..l! +\v)
I R .I.c . R) dex, c. 2 2 dex

2
doc, R' doc,." R' •. doc, _

+(K,,+1 D 21 ) ~t +(~ c" +1, K,,)G 1" +~ U;~)' -/" :;~)J
F, = _ IN, -ll*+I[C"'(! 1"+ I.. (d:l)' -1,.dt-"-)J+L.~[(v- ~W)((C,,_I_., D,,)(~I~.'+lr\)

" R cT , R) ., 2 1. d:x, da, R' da, dex2 •. R' ", da, /

+ (K,,+ ~ D12)%t~ +GC,,+ A, K,,)G 1"+ ~(~;IJ -1" *~))1
F) =.~ M"2 -~, d~~; [ K'2G 1" + ~ (J:J -I·" :~Jl

where ( J., = d( )jdoc,.


